1. Identification of documents\banknotes security elements.

Objective: to obtain knowledge about basic means of preventing documents\banknotes from counterfeiting and forgery; to get to know contemporary document authenticity evaluation techniques generally used in document security technologies; to learn to identify banknotes\documents.

2. Control of submicron elements by the optical analyser NIKON – S.

Objective: to observe linear and stepper dimensions of submicron elements in passing light. Measured values range from 0.5 to 190 µm.

3. Measurement of parameters of dielectric films by laser ellipsometer.

Objective: to obtain understanding about basic principles of ellipsometry as well as measured quantities and to measure the optical parameters of dielectric films using the laser ellipsometer Gaertner L115.

4. Surface wetting angle measurement.

Objective: to determine the wetting angle of a given sample after physical, chemical, mechanical, ion plasma etc. impact; to plot diagrams of surface wettability.

5. Measurement of reflectance and transmittance coefficients using photometer FO – 1.

Objective: to gain knowledge about basic quantities describing photometric properties of materials; to measure coefficients of reflectance or transmittance of given samples for different wavelengths of light using photometer FO - 1.

6. Infrared (IR) spectroscopy.

Objective: to obtain knowledge about infrared (IR) spectroscopy method; to learn about spectrophotometer SPECORD 75, used for spectra recording; to identify the polymer mixtures by infrared spectroscopy technique.

7. Measurement of colours by spectrophotometry method.

Objective: to gain knowledge about basic quantities describing photometric properties and colour of materials; to measure reflectance coefficient of given samples for different wavelengths of light by photometer FO - 1; to calculate the main characteristics of sample colour.

8. Atomic absorption spectral analysis.

Objective: to learn about the major principles of atomic absorption spectral analysis and measurable quantities; to measure the concentration of copper in solution using atomic absorption spectrometer AAS-M403 Perkin Elmer.

9. The formation of dielectric coating (SiO₂) by electron beam in vacuum.

Objective: to gain knowledge about the formation technique of coatings (SiO_2) in vacuum by electron beam; to form SiO_2 dielectric coatings of various thicknesses on Si substrates using an electron gun.

10. Investigation of ceramics employing X-ray photoelectron and Auger electron spectroscopies

Objective: to familiarise with the methods of X-ray photoelectron spectroscopy and Auger electron spectroscopy; to investigate surface of the ceramic sample using XSAM800 Kratos Analytical X-ray photoelectron spectrometer.

11. Laser interference lithography

Objective: to familiarise with fabrication technology of periodical structures, namely laser interference lithography; to fabricate periodical structures in photoresist; to estimate the period of fabricated diffraction grating and orientation of gratings in respect to each other; to measure linear dimensions and quality of fabricated structures employing optical microscope.

12. Investigation of semiconductor laser

Objective: to familiarise with optical electronics semiconductor devices, light diode, semiconductor laser, photodiode; to investigate current-voltage and luxampere characteristics of semiconductor laser; to estimate dependence of efficiency on power used by laser; to evaluate forbidden gap width and external quantum efficiency of semiconductor.

13. Investigation of periodical structures employing optical methods

Objective: to familiarise with investigation of periodical structures employing optical methods; to evaluate diffraction efficiency of periodical structures; to estimate their geometrical dimensions employing optical microscope.

14. Ultraviolet and visible light spectroscopy

Objective: to familiarise with method of ultraviolet and visible light spectroscopy; to investigate optical characteristics of thin semiconductor films.

15. Electrical measurements of resistance of semiconductors and conductors

Objective: to familiarise with mechanisms of electrical conductivity of semiconductors and conductors; to perform and analyse temperature influence on resistance of semiconductors and metals; to evaluate forbidden gap width of semiconductor.

16. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX/EDS)

Objective: to familiarise with methods of scanning electron microscopy and energy dispersive X-ray spectrometry; to perform SEM measurements employing different modes and learn to analyse obtained images; to perform EDX measurements and learn to evaluate the composition of investigated sample.

17. Measurements of ionic conductivity of ceramic materials employing impedance spectroscopy method

Objective: to familiarise with mechanisms of ionic conduction in ceramic materials; to perform measurements of ionic conduction dependence on temperature for these materials; to estimate activation energy of ionic conduction.

18. X-ray fluorescence analysis

Objective: to familiarise with methodology of X-ray fluorescence analysis; to estimate unknown elements in investigated sample (qualitative analysis) and relative concentration of every element in the sample (quantitative analysis).

19. Quantitative evaluation of the surface free energy of solid state materials

Objective: to evaluate the critical surface tension of the surface of solid state body using contact angle goniometer and four different liquids; to evaluate surface free energy using Owens and Wendt graphs.

20. Formation of thin film structure topology using contact photolithography

Objective: to form and characterise a single layer topology on a Si substrate using contact photolithography.

21. Surface characterization using atomic force microscope

Objective: to learn to characterise the surface of a sample using atomic force microscope (AFM); to quantitatively evaluate surface morphology and other properties of the sample.

22. Conductometric analysis

Objective: to learn to find and evaluate the conductivity of various material solutions; to familiarise with the means and techniques for measurement of specific electric conductivity.

23. Investigation of polarising laser attenuator

Objective: to familiarise with the tendencies of polarised optics and its capabilities to use polarising elements for the control of the intensity of a laser beam.

24. Measurement of the Brewster angle using white polarised light

Objective: to measure the Brewster angle of dielectric materials of different refractive indexes using a randomly chosen wavelength within the visible spectrum and a motorised setup for white polarised light measurements.

25. Micro-machining of materials using femtosecond laser pulses

Objective: to determine the threshold of laser effect for materials; to micro-machine surfaces using femtosecond laser Pharos and setup for microfabrication FemtoLAB.

26. Pump-probe spectroscopy

Objective: to investigate material absorption kinetics using pump-probe spectrometer Harpia and femtosecond laser Pharos.

27. Formation of ceramic layers using plasma spray method

Objective: to familiarise with the method of the plasma spray in vacuum; to fabricate a ceramic layer.