KAUNAS UNIVERSITY OF TECHNOLOGY

STUDY MODULE PROGRAMME (SMP)

Ma	dula Cada	Т	150	В	209		Accredited	2024 00 01 Re		Ren	ewal	date			
MO	dule Code	Branch	h of Science	Progr.	Registr.	№.	until	2024	09	01					
Enti	Entitlement														
Sens	Sensors and their Technologies														
Prer	Prerequisites														
Basi	Basics of physics and mathematics														
Mai	Main aim														
Tok	To know the main types of the sensors, its operation and design principles. To obtain knowledge about the														
mai	n application	n areas o	of the sensor	s							-				
Cou	rse (module) Learni	ing Outcome	s											
						Tea	iching /								
<u>№</u> .	Outcomes					Lea	rning	Assess	sment	Meth	ods				
						Me	thods								
1	Basic know	wledge	about the des	sign and		Lecture Written examination									
1	operation	principl	es of the diff	erent ser	isors	Lee	, ture	whiten examination							
	Know and understand operation principles,						oratory	Colloquium (interview led by							
2	design types and application areas of the					clas	sses, Lecture	lecturer and / or specialist),							
	different o	ptical se	ensors.	<u> </u>			,	Labora	atory	exam	inatio	<u>n</u>			
2	Know and	underst	tand operatio	n princip	oles,	Lab	oratory	Collog	lninum	(inte	rview	led by	led by		
3	design typ	es and a	ipplication al	reas of th	ie	clas	sses, Lecture	lecturer and / or specialist),							
	Universite to	undoret	ure sensors.		100			Labora	atory	exam	matio	n			
4	Anow and	undersi	and operation of	n princip roos of th	nes,	Lab	oratory	Labora	atory	exam	inatio	n, Wr	itten		
4	different n	es allu a	pplication al	icas of th	le	clas	sses, Lecture	examin	natior	ı					
	Know and	underst	and operation	n nrincii	oles										
5	design typ	es and a	pplication a	reas of th	e	Lab	oratory	Labora	atory	exam	inatio	n, Wr	itten		
C	various ch	emical s	sensors		•	clas	sses, Lecture	examin	natior	1					
	Know and	underst	and operatio	n princi	oles,	T 1		x 1				** *			
6	design typ	es and a	application a	reas of th	e	' Laboratory Laboratory ex					inatio	n, Wr	itten		
	mechanica	l sensor	rs			clas	sses, Lecture	exami	natior	1					
	Know and	underst	tand operatio	n princip	oles,										
7	design types and application areas of the Lecture Written examination														
	different n	nicrome	chanical sen	sors.											
Sum	mary														

In this course types of the sensors, its operation and design principles are described. Optical sensors (semiconductor photodetectors, photoemission-based sensors, coordination-sensitive detectors) are explained. Different thermo-sensors, peculiarities of the measurements of the thermal resistance, temperature measurement methods are described. Types and operation principles of the magnetic field sensors are depicted. Types and operation principles of the chemical and bio- sensors are explained. Mechanical sensors and its application for measurements of the distance, displacement, acceleration, pressure are explained. Micromechanic sensors are described in present cource as well.

Level of module

Leve	l of programme	Subject group		
Cycle	Degree	Subject group		
First Bachelor		Special Subjects		

Syllabus

№.	Sections and themes
1.	Main types of the optical sensors and their operation principles
2.	Main types of desing of the temperature sensors and their operation principles
3.	Main types of desing of the magnetic sensors and their operation principles
4.	Main types of desing of the chemical sensors and their operation principles

N⁰.

Sections and themes

5. Main types of desing of the mechanical sensors and their operation principles

6. Main types of desing of the micromechanical sensors and their operation principles

Evaluation procedure of knowledge and abilities:

The ten-grade scale and the cumulative evaluation system are applied. The module's final evaluation consists of the sum of multiplications of the grades of the intermediate assessments and the final assessment multiplied by weighting coefficients (percentage components).

References

		Edition libr	in KTU ary		Number of ex. in the
№.	Title	Pressmark	Number of exemplars	In KIU bookstore	methodical cabinet of the depart.
1.	The measurement, instrumentation, and sensors : handbook / editor-in-chief John G. Webster (1999)	E26673	1	No	
2.	Paskaitų konspektai			No	
3.	Du, Winncy Y. Resistive, capacitive, inductive, and magnetic sensor technologies (2015)	D213360	1	No	
4.	Smart sensors and MEMS : intelligent devices and microsystems for industrial applications (2018)	D216279	1	No	
5.	Fraden, Jacob Handbook of modern sensors : physics, designs, and applications (2016)	D216244	1	No	
6.	https://moodle.ktu.edu/course/view.php?id=1205			No	
Add	itional literature				

N₂. Title

1. Handbook of modern sensors : physics, designs, and applications / Jacob Fraden (2010) Lecturer

	Position	Name, surname
Coordinating	General Research Assistant	Šarūnas MEŠKINIS
Subdivision		

	Entitlement	Code	Contribution, %
Atsakingas padalinys	Institute of Materials Science	70	100
Languages of instruc	ction		

Autumn semester: Lithuanian, English

Teaching form

	Mode of		Structure							
<u>№</u> .	studies	Sem	ester	Lectures	Practical (supervised)	Laboratory (supervised)	Tutorial	orial Independent Learning		Credits
1	Standard	Α	S	32	0	32	0	96	160	6

Teaching form Standard

Schedule of individual work tasks and their influence on final grade

						We	eel	k c	of j	pre	eser	ntm	ent	: of	tas	sk ((*)	and
Assassment form	Final	№. of	Total	Influence on							rep	orti	ing	(0))			
Assessment form	Assessment	syllabus	hours	grade, %	1	22	4	56	7	0	10	11	12	12	1 /	15	16	17-
					1	23	4	SC	/	0>	10	11	12	13	14	13	10	20
Laboratory examination		1-8	16	10	*												0	
Written examination	\checkmark	4-7	45	50	*													0
Colloquium (interview																		
led by lecturer and / or		1-3	35	40							0							
specialist)																		
Total:	-	-	96	100														

Assessment	criteria a	and conn	ection to	the study	module's	study result	ts
ribbebbillent	ernerna e		cetton to	the study	modules	Study resul	ub

Assessment form	Assessment week	Assessment criteria	Course (module) Learning Outcomes
Laboratory examination	16	 1. Preparation for laboratory work. 2. Analysis of the obtained results and comparison with the theoretical material. 3. Formulation and justification of conclusions. 4. Presentation of the results of the graphic part. 5. Reliability of results. 	 Know and understand operation principles, design types and application areas of the different magnetic field sensors. Know and understand operation principles, design types and application areas of the different optical sensors. Know and understand operation principles, design types and application areas of the different temperature sensors. Know and understand operation principles, design types and application areas of the different temperature sensors. Know and understand operation principles, design types and application areas of the mechanical sensors Know and understand operation principles, design types and application areas of the warious chemical sensors
Written examination	17	 1. Each exam question is evaluated in a 10-point system. If nothing is answered at all - 0. 2. The average grade of all examination questions is derived and the final examination grade is derived accordingly. 3. The exam is credited if the final grade is 5 or more. 	 Basic knowledge about the design and operation principles of the different sensors Know and understand operation principles, design types and application areas of the different magnetic field sensors. Know and understand operation principles, design types and application areas of the different micromechanical sensors. Know and understand operation principles, design types and application areas of the different micromechanical sensors. Know and understand operation principles, design types and application areas of the mechanical sensors Know and understand operation principles,

Assessment form	Assessment week	Assessment criteria	Course (module) Learning Outcomes				
			design types and application areas of the various chemical sensors				
Colloquium (interview led by lecturer and / or specialist)	10	 1. Each colloquium question is evaluated on a 10-point scale. If nothing is answered at all - 0. 2. The average of all grades is derived and the final colloquium grade is derived accordingly. 3. The colloquium is credited if the final grade is 5 or more. 	 Know and understand operation principles, design types and application areas of the different optical sensors. Know and understand operation principles, design types and application areas of the different temperature sensors. 				