KAUNAS UNIVERSITY OF TECHNOLOGY

STUDY MODULE PROGRAMME (SMP)

Module Code		Т	165	М	001		Accredited	2025	09	01	Renewal date	
		Branc	h of Science	Progr.	Registr. J	Nº.	\mathbb{Q} . until 202		09	01		
Entitlement												
Optical Technologies and Spectroscopy												
Prerequisites												
Basic knowledge in Physics, Mathematics and Informatics												
	Main aim											
	To know principles of micro- and nanostructures formation employing laser based technologies and											
spectroscopic methods applied for characterization. To obtain practical knowledge in formation and												
analysis of nanostructures.												
Cou	Course (module) Learning Outcomes											
№.	№. Outcomes Teaching / Learning Methods Assessment Methods									t Methods		
	T 1.1. (.	1. 6 1.			.11'	La	aboratory class	es,	Labor	atory	examination,	
1			asic design a		elling	Le	ecture, Team				nation, Project	
	pricipais o	or micro	- and nanostr	uctures.		pr	oject		report		-	
	Is able to a	lecion t	he nattern of	nanoohi	ects and		aboratory class	es,		•	examination,	
2		-	esign the pattern of nanoobje r optical response.				Lecture, Team		Oral examination, Project			
	•	•	•			-	oject		report			
			anobject emp				Laboratory classes,		Laboratory examination,			
3		s wave a	and femtosecond pulsed				Lecture, Team		Oral examination, Project			
	lasers.	1	.1		2.1		oject		report		•	
4			ceed the measurements of the				Laboratory classes, Lecture, Team		Laboratory examination,			
4	micro and nanostructures with spectroscopic								Oral examination, Project report			
	equipment		the best analy	rtical too	hniqua		oject aboratory class	26			avamination	
5		o choose the best analytical technique acterization of nanostructures and is					ecture, Team	C 5,	Laboratory examination, Oral examination , Project			
5	able to inte			project			report					
Sum	mary	<u>orprot ti</u>	ie results.			P1	0,000		report			
		inciples	of continuo	is wave	and ultrash	nort	pulsed laser a	nd its a	applica	tion f	for micro- and	
							s will be able to					
			t nanostructu								*	
Leve	el of module	e										
	Level	l of prog	gramme		C	luh:	ect group			Sub	ject level	
Cyc	le	Γ	Degree	7	2	subj	eet group			Sub		
Seco	ond	Ν	Aaster		Special Su	bjec	ets		Deepe	ening		
Syll	Syllabus											
<u>№</u> .	Sections and themes											
1.	Design, modelling and simulation of nanostructures.											
2.	Intensive laser radiation work safety issues.											
3.	Fabrication of micro- and nanoobjects employing continouos wave laser.											
4.	Fabrication of micro- and nanoobjects employing ultrashort laser pulses.											
5.	Application of UV/VIS and fluorescence spectroscopy in the analysis of micro and nanostructures.											
6.	Principles and applications of Raman microspectroscopy and surface enhanced Raman spectroscopy (SERS).											
7.	Fourier tra	Fourier transform infrared spectroscopy (FTIR and NIR).										
8.	Pump-probe spectroscopy. Principles and analysis of results.											
9.	Spectroscopic ellipsometry. Principles and application for analysis of nanoobjects.											

Evaluation procedure of knowledge and abilities:

The ten-grade scale and the cumulative evaluation system are applied. The module's final evaluation consists of the sum of multiplications of the grades of the intermediate assessments and the final assessment multiplied by weighting coefficients (percentage components).

References

Kele	erences					Edition in KTU library			In KTU	ρv	Number of ex. in the	
№.				Title		Pressmark Number of exemplars		booksto	re met	hodical inet of depart.		
1.	Bahaa E. Saleh, Teich, Malvin Carl, Fundamentals of photonics // Wiley-Interscience, 2007, 1171 p.						E29645	2		No		
2.	Springer, 4	457 p).		opy Vol. 1 //		-	0		No		
3.	Comment:Available at Institute of Materials Science Demtroder, W., Laser spectroscopy Vol. 2 // Springer, 697 p.									No		
4.	<i>Comment:Available at Institute of Materials Science</i> Guobienė, A. ir kt., Medžiagų mokslas: laboratoriniai darbai. Mokomoji knyga // Dakra, 2013, 130 p.									No	60	
	Comment:	Avai			of Materials Sci	ence						
5.	J	Fujiwara, H., Spectroscopic Ellipsometry: Principles and Applications // Wiley & Sons, 2007, 369 p.								No		
6.	Barat,K., Laser Safety in the Lab // SPIE press, 2013, 166 p.									No		
Add	itional litera	ature										
№.	Title											
1.	Schäfer, M., Computational engineering - introduction to numerical methods, Springer, 2006, 321 p. (Electronic version)											
2.	Lakowicz, E29681)	J.R.	, Princ	iples of flue	prescence spect	roscoj	py, Spring	ger, 2006,	954	p. (KTU 1	brary:	
3.	Vandenabe library: D2			ctical Ram	an spectroscop	y : an	introduct	ion, Wiley	, 20	13, 161 p.	(KTU	
4.	Diem M. Modern vibrational spectroscopy and micro-spectroscopy [elektroninis išteklius] · theory											
Lect	urer											
		•			Position		Name, surname Asta TAMULEVIČIENĖ					
Sub	Coordinat	ing		Ass	oc. professor			Asta 17	AMU	LEVICIE	NE	
Subt	Subdivision Entitlement					nent	Code Co				ontribution, %	
Atsakingas padalinys Institute of Materials S						rials S	Science 70 100					
Languages of instruction												
Autumn semester: Lithuanian, English												
Spring semester: Lithuanian, English												
Teac	ching form											T
№.	Mode of studies Sen		e of Jies Semester Lectures Practical La		Lab			ependent	Total hours	Credits		
1	Standard	А	S	10	(supervised) 28		ervised) 22	4		earning 96	160	6
1	Stanuaru	А	5	10	20		<i>44</i>	4	1	70	100	U

Schedule of individual work tasks and their influence on final grade

				Influence on grade, %	Week of presentment of task (*) and					
Assessment form	Final M Assessment sy									
		synabus			$12345678910111213141516 \begin{array}{c} 17-\\ 20 \end{array}$					
Laboratory examination		3-9	18	30	**0**0*0 0					
Project report		1-9	38	30	* 0					
Oral examination		1-9	40	40	* 0					
Total:	-	-	96	100						

Assessment criteria and connection to the study module's study results

Assessment form	Assessment	Assessment criteria	Course (module) Learning		
Laboratory examination	week 4, 7, 9, 10	 Student is able to summarize the findings observed during the performing of the lab works. Student understands the meaning of the obtained results, is able to compare the obtained results with the ones found in literature, write a meaningful conclusion. Evaluation is negative (0-4) when the answers to the questions are incomplete and very fragmented, the topic is unknown, the graphical material, equations and their solutions are unknown and it is not possible to answer additional questions. Positive evaluation (10) is given when the answers to the questions are presented in a consistent, clear manner, formulas with explanations are used, which explain the phenomena / processes in question, graphical dependencies are presented, schemes with explanations are given, and examples are applied in practice. 	 Outcomes Is able to choose the best analytical technique for characterization of nanostructures and is able to interpret the results. Is able to create nanobject employing continuous wave and femtosecond pulsed lasers. Is able to define basic design and modelling pricipals of micro- and nanostructures. Is able to design the pattern of nanoobjects and predict their optical response. Is able to proceed the measurements of the micro and nanostructures with spectroscopic equipment. 		
Project report	16	• It is assessed how the author of the project managed to understand the solution of the raised and formulated problem, to formulate the goal and objectives. It is assessed whether the selected path for problem solving has been chosen correctly and whether the best technological and analytical facilities were chosen. Evaluation: 0-4 (Unsatisfactory) is assessed	 Is able to choose the best analytical technique for characterization of nanostructures and is able to interpret the results. Is able to create nanobject employing continuous wave and femtosecond pulsed lasers. 		

Assessment form	Assessment week	Assessment criteria	Course (module) Learning Outcomes
		if the author of the work does not understand the raised and formulated problem, does not achieve the set goal (s), does not fulfill the set tasks. Such an assessment may also be dictated if the fact of plagiarism is determined. 10 (Excellent) is assessed when the work meets all the above criteria, the topic is relevant, complex, and analyzed in detail using the knowledge gained during the participation in the module.	 Is able to define basic design and modelling pricipals of micro- and nanostructures. Is able to design the pattern of nanoobjects and predict their optical response. Is able to proceed the measurements of the micro and nanostructures with spectroscopic equipment.
Oral examination	17	• It is assesed the ability to present the relevance of the chosen topic, experimentally obtained results and their analysis in the audience. The evaluation consists of: presentation (60%) and answers to the questions (Q&A session) (40%).	 Is able to choose the best analytical technique for characterization of nanostructures and is able to interpret the results. Is able to create nanobject employing continuous wave and femtosecond pulsed lasers. Is able to define basic design and modelling pricipals of micro- and nanostructures. Is able to design the pattern of nanoobjects and predict their optical response. Is able to proceed the measurements of the micro and nanostructures with spectroscopic equipment.